organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-*N*'-[(Furan-2-yl)methylene]-2hydroxy-2,2-diphenylacetohydrazide monohydrate

Monther A. Khanfar,^a Kayed A. Abu-Safieh,^b Rawhi Al-Far,^c Basem Fares Ali^d* and Caecilia Maichle-Moessmer^e

^aDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan, ^bDepartment of Chemistry, The Hashemite University, Zarqa, Jordan, ^cDepartment of Chemistry, Al-Balqa'a Applied University, Salt, Jordan, ^dDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and ^eDepartment of Chemistry, Institut für Anorganische Chemie, auf der Morgenstelle 18, Universität Tübingen, D-72076 Tübingen, Germany.

Correspondence e-mail: bfali@aabu.edu.jo

Received 31 August 2007; accepted 11 September 2007

Key indicators: single-crystal X-ray study; T = 213 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.123; data-to-parameter ratio = 11.1.

In the structure of the title compound, $C_{19}H_{16}N_2O_3 \cdot H_2O$, the configuration with respect to the C=N double bond is *trans*. The molecules form layers parallel to the *ac* plane, linked to each other by water molecules and OH groups, which are extended along the *b* axis involving the NH groups of adjacent molecules *via* N-H···OH₂ interactions, thus resulting in sheets of molecules. In addition, there are edge-to-face and offset face-to-face interactions between phenyl rings of adjacent molecules along both the *a* and *b* axes [C···C distances in the range 3.9–4.1 Å]. The extremely strong hydrogen bonds and phenyl-phenyl interactions contribute greatly to stabilizing the three-dimensional network.

Related literature

For general background, see: Sun *et al.* (2006); Gup & Kirkan (2005); Ganjali *et al.* (2006); Getautis *et al.* (2006); Kuriakose *et al.* (2007); Owen & Wenbin (2002); Tobin (1990). For related literature, see: Allen *et al.* (1987); Yathirajan *et al.* (2007); Mathew *et al.* (2007); Sun *et al.* (2007); Dance (1996).

Experimental

Crystal data

 $C_{19}H_{16}N_2O_3 \cdot H_2O$ $M_r = 338.35$ Monoclinic, $P2_1/c$ a = 10.6339 (17) Å b = 10.857 (2) Å c = 14.5207 (12) Å $\beta = 91.819 (10)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (*HELENA*; Spek, 1996) $T_{\min} = 0.937, T_{\max} = 0.985$ 3847 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.123$ S = 1.013293 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2 - H2A \cdots O4^{i}$ $D3 - H3A \cdots O4^{ii}$ $D4 - H4'' \cdots O2$ $D4 - H4'' \cdots N1$ $D4 - H4' \cdots N1$ $D4 - H4' \cdots N1$ $D4 - H4' \cdots N1$	0.89 (2) 0.92 (3) 0.86 (5) 0.86 (5) 0.97 (5) 0.97 (5) 0.89 (2)	2.40 (2) 1.94 (3) 2.11 (5) 2.38 (5) 2.07 (5) 2.56 (5) 2.00 (2)	3.248 (3) 2.776 (2) 2.937 (3) 2.929 (3) 3.003 (3) 2.929 (3) 2.521 (3)	159 (2) 151 (3) 161 (4) 122 (4) 163 (4) 103 (4)
	(-)	(_)	(0)	(-)

V = 1675.6 (4) Å³

Mo $K\alpha$ radiation

 $0.55 \times 0.50 \times 0.20 \text{ mm}$

3 standard reflections

every 400 reflections

intensity decay: 3.0%

All H-atom parameters refined

3293 independent reflections

1981 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 213 (2) K

 $R_{\rm int}=0.054$

298 parameters

 $\Delta \rho_{\rm max} = 0.1 \hat{7} \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Z = 4

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: *CAD-4* (Enraf–Nonius, 1994); cell refinement: *SET4* and *CELDIM* (Enraf–Nonius, 1994); data reduction: *HELENA* (Spek, 1996) and *PLATON* (Spek, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *PLATON*; software used to prepare material for publication: *XCIF* in *SHELXTL* (Sheldrick, 1997*b*).

The Deanship of Scientific Research at The Hashemite University, Al al-Bayt University and Al-Balqa'a Applied University (Jordan) are thanked for financial support. We also thank the DFG (Bonn, Germany) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2031).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Dance, I. G. (1996). Supramolecular Inorganic Chemistry, in The Crystal as a Supramolecular Entity, edited by G. R. Desiraju, pp. 137–233. New York: John Wiley.
- Enraf-Nonius (1994). CAD-4, SET4 and CELDIM. Enraf-Nonius, Delft, The Netherlands.
- Ganjali, M. R., Fardbod, F., Norouzi, P. & Adib, M. (2006). Sens. Actuators B, **120**, 119–124.

- Getautis, V., Grazulevicius, J. V., Daskeviciene, M., Malinauskas, T., Gaidelis, V., Jankauskas, V. & Tokarski, Z. (2006). J. Photochem. Photobiol. A Chem. 180, 23–27.
- Gup, R. & Kirkan, B. (2005). Spectrochim. Acta A, 62, 1188–1195.
- Kuriakose, M., Kurup, M. R. P. & Suresh, E. (2007). Spectrochim. Acta A, 66, 353–358.
- Mathew, N., Kuriakose, M., Seena, E. B. & Kurup, M. R. P. (2007). Acta Cryst. E63, 02190–02191.
- Owen, R. E. & Wenbin, L. (2002). Acc. Chem. Res. 35, 511-522.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1996). HELENA. University of Utrecht. The Netherlands.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sun, Y., Zhang, D., Gao, H., Wang, H. & Tao, R. (2006). Anal. Sci. X, 22, x289– 290.
- Sun, Y.-F., Sun, X.-Z., Li, J.-K. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2180– o2181.
- Tobin, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 857-879.
- Yathirajan, H. S., Narayana, B., Sunil, K., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, 02565.

Acta Cryst. (2007). E63, o4078-o4079 [doi:10.1107/S1600536807044443]

(E)-N'-[(Furan-2-yl)methylene]-2-hydroxy-2,2-diphenylacetohydrazide monohydrate

M. A. Khanfar, K. A. Abu-Safieh, R. Al-Far, B. F. Ali and C. Maichle-Moessmer

Comment

Schiff base hydrazones derived from the condensation of aromatic carbaldehydes and hydrazides are of interest owing to their biological activities and applications (Sun *et al.*, 2006; Gup & Kirkan, 2005; Ganjali *et al.*, 2006; Getautis *et al.*, 2006). They have been also used as multidentate ligands for complexation with metal ions (Kuriakose *et al.*, 2007). On the other hand, research in the field of supramolecular complexes containing metal ions and aroylhdrazones is of a considerable interest due to their possible applications as molecule-based metals and magnets, optical and thermal switches, and probes for DNA structurs (Owen & Wenbin, 2002; Tobin, 1990). The crystal structure of the title compound is reported here.

The asymmetric unit of the title compound comprises an organic moiety and a water of solvation (Fig. 1). Bond distances and angles, are within normal ranges (Allen *et al.*, 1987), and in accordance with those reported for similar compounds (Yathirajan *et al.*, 2007; Mathew *et al.*, 2007; Sun *et al.*, 2007). The existance of organic moiety in the title compound in the expected keto form is evident from the C6—O2 bond length, and the C5=N1 bond length confirms the double bond character. The C6–N2 bond length is typical for an intermediate between a single and a double bond, suggesting some degree of delocalization in the hydrazide.

The molecules are packed efficiently in a layer motif running parallel to the *c* axis, Fig. 2. In this arrangement, the molecules are linked to each other by water molecules that involve in multihydrogen bonding with the organic moiety. Its two H atoms engage each in binding to one O and one N atoms simultyaneouly (Fig. 1) as O—H···N, O—H···O and O—H···O, forming a double bifurcated hydrogen bonds. The water molecules further interact with the OH groups from the next organic molecule parallel to *c* axis (Fig. 2). These hydrogen bonds are extremely strong (Table 1) as is evident by relatively short D···A distances and D—H···A angles. There is a strong intramolecular interaction N2—H2A···O3 in the structure. In addition to the hydrogen bonding, molecules within layers exhibit *via* phenyl···phenyl (Ph···Ph) interactions (Dance 1996) in an edge-to-face **ef** motif (C—H··· π ; C12—H12···C17, C18 (*x*, 1/2 - y, 1/2 + z) of the order of 2.969 and 2.978 Å, respectively). The Ph···Ph interactions, using the diphenyl groups, between each layer and the adjacent one parallel to the *a* axis also exist comprising both offset-to-face **(off)** and edge-to-face **(ef)** motifs (C···C distances in the range 3.9 – 4.1 Å), Fig. 2.

Ph…Ph interactions together with the extremely strong hydrogen bonds contribute greatly in stabilization of a three-dimensional network.

Experimental

For the preparation of the title compound, a mixture of 2-hydroxy-2,2-diphenylacetohydrazide (240 mg, 1 mmol) and furan-2-carbaldehyde (110 mg, 1.1 mmol) dissolved in propanol (25 ml), was refluxed with stirring for 3 h. The resulting mixture was filtered off and allowed to stand undisturbed at room temperature. The title compound crystallized out during few days as colourless plates. Crystals were filtered off, washed with 20 ml cold methanol then 10 ml diethylether, and dried under vacuum (yield: 89%). Solid; mp 451–452 K; Spectroscopic analysis: IR (KBr, v cm⁻¹): 3280; vNH, 1667; vC=O,

1625; vC=N; ¹H NMR (300 MHz, DMSO, δ, p.p.m.): 3.50 (s, OH); 9.9 (s, CONH); 9.30 (s,CH=); 7.10 – 7.40 (m, ArH); 7.70–7.90 (m, *R*); EIMS: m/z = 320 (*M*+).

Refinement

All H atoms were located in the difference map and refined independently with isotropic thermal displacement coefficients.

Figures

Fig. 1. The structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of the title compound showing the layers of molecules; hydrogen atoms not involved in hydrogen bonding were omitted for clarity. Hydrogen bonds and Ph···Ph interactions are shown with dashed and solid lines, respectively.

(E)—N'-[(furan-2-yl)methylene]-2-hydroxy-2,2- diphenylacetohydrazide monohydrate

Crystal data	
$C_{19}H_{16}N_2O_3 \cdot H_2O$	$F_{000} = 712$
$M_r = 338.35$	$D_{\rm x} = 1.341 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
<i>a</i> = 10.6339 (17) Å	$\theta = 2.1 - 27.4^{\circ}$
<i>b</i> = 10.857 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.5207 (12) Å	T = 213 (2) K
$\beta = 91.819 \ (10)^{\circ}$	Plate, colorless
V = 1675.6 (4) Å ³	$0.55 \times 0.50 \times 0.20 \text{ mm}$
<i>Z</i> = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.054$
Radiation source: fine-focus sealed tube	$\theta_{max} = 26.1^{\circ}$
Monochromator: graphite	$\theta_{\min} = 3.1^{\circ}$
T = 293(2) K	$h = -1 \rightarrow 13$
ω scans	$k = 0 \rightarrow 13$
Absorption correction: ψ scan	$l = -17 \rightarrow 17$

(program; reference?)	
$T_{\min} = 0.937, \ T_{\max} = 0.985$	3 standard reflections
3847 measured reflections	every 400 reflections
3293 independent reflections	intensity decay: 3.0%
1981 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	All H-atom parameters refined
$wR(F^2) = 0.123$	$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 0.0604P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
3293 reflections	$\Delta \rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$
298 parameters	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	1.1720 (2)	0.2889 (2)	0.13010 (15)	0.0332 (5)
01	1.14268 (15)	0.18466 (15)	0.07977 (11)	0.0413 (4)
C4	1.2148 (3)	0.1898 (3)	0.00285 (17)	0.0436 (6)
H4	1.201 (2)	0.116 (3)	-0.0400 (18)	0.058 (8)*
C3	1.2863 (3)	0.2907 (3)	0.00473 (17)	0.0444 (6)
Н3	1.346 (2)	0.316 (2)	-0.0402 (19)	0.058 (8)*
C2	1.2589 (2)	0.3555 (3)	0.08660 (18)	0.0413 (6)
H2	1.288 (2)	0.432 (3)	0.1031 (18)	0.053 (8)*
C5	1.1047 (2)	0.3121 (2)	0.21232 (16)	0.0346 (5)
Н5	1.124 (2)	0.390 (2)	0.2423 (15)	0.038 (6)*
N1	1.02022 (17)	0.23747 (18)	0.23979 (12)	0.0347 (5)
N2	0.95604 (18)	0.2774 (2)	0.31553 (13)	0.0341 (5)
H2A	0.978 (2)	0.347 (2)	0.3437 (16)	0.037 (7)*

O2	0.81756 (15)	0.11956 (15)	0.30338 (11)	0.0408 (4)
C6	0.8530 (2)	0.2155 (2)	0.34018 (14)	0.0311 (5)
C7	0.7808 (2)	0.2756 (2)	0.41943 (15)	0.0330 (5)
O3	0.85302 (15)	0.38056 (15)	0.44913 (12)	0.0368 (4)
НЗА	0.851 (3)	0.390 (3)	0.512 (2)	0.084 (11)*
C8	0.7711 (2)	0.1843 (2)	0.49953 (14)	0.0336 (5)
C9	0.8780 (3)	0.1208 (2)	0.52946 (17)	0.0413 (6)
Н9	0.955 (2)	0.130 (2)	0.4964 (17)	0.049 (7)*
C10	0.8751 (3)	0.0443 (2)	0.60630 (17)	0.0472 (7)
H10	0.953 (3)	-0.001 (3)	0.6239 (18)	0.055 (8)*
C11	0.7665 (3)	0.0320 (3)	0.65384 (18)	0.0526 (8)
H11	0.762 (2)	-0.023 (2)	0.708 (2)	0.061 (8)*
C12	0.6610 (3)	0.0944 (3)	0.6250 (2)	0.0588 (8)
H12	0.584 (3)	0.088 (3)	0.652 (2)	0.070 (9)*
C13	0.6619 (3)	0.1708 (3)	0.54799 (18)	0.0480 (7)
H13	0.586 (2)	0.213 (2)	0.5267 (18)	0.053 (8)*
C14	0.6519 (2)	0.3186 (2)	0.38027 (14)	0.0331 (5)
C19	0.5693 (2)	0.2389 (3)	0.33438 (17)	0.0425 (6)
H19	0.593 (2)	0.155 (3)	0.3246 (18)	0.048 (8)*
C18	0.4533 (3)	0.2802 (3)	0.30040 (19)	0.0504 (7)
H18	0.400 (3)	0.226 (2)	0.2699 (18)	0.054 (8)*
C17	0.4181 (3)	0.4014 (3)	0.31322 (19)	0.0520 (8)
H17	0.340 (3)	0.429 (3)	0.2918 (18)	0.059 (8)*
C16	0.4982 (3)	0.4808 (3)	0.3585 (2)	0.0538 (7)
H16	0.474 (3)	0.568 (3)	0.3693 (19)	0.063 (8)*
C15	0.6151 (3)	0.4395 (3)	0.39158 (18)	0.0456 (7)
H15	0.669 (3)	0.496 (2)	0.4232 (19)	0.055 (8)*
O4	0.9139 (2)	0.03785 (18)	0.12617 (13)	0.0501 (5)
H4"	0.892 (4)	0.079 (4)	0.174 (3)	0.137 (18)*
H4'	0.997 (4)	0.071 (4)	0.116 (3)	0.123 (15)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0347 (13)	0.0348 (13)	0.0300 (12)	0.0010 (11)	0.0006 (10)	-0.0048 (11)
01	0.0487 (10)	0.0379 (9)	0.0380 (9)	-0.0019 (8)	0.0098 (8)	-0.0047 (8)
C4	0.0563 (16)	0.0442 (15)	0.0309 (13)	0.0065 (14)	0.0097 (12)	-0.0021 (12)
C3	0.0478 (15)	0.0518 (17)	0.0343 (13)	0.0051 (14)	0.0122 (12)	0.0069 (13)
C2	0.0453 (16)	0.0393 (15)	0.0398 (15)	-0.0069 (12)	0.0072 (12)	-0.0003 (12)
C5	0.0348 (13)	0.0373 (14)	0.0318 (12)	-0.0024 (12)	0.0018 (10)	-0.0052 (11)
N1	0.0372 (11)	0.0400 (11)	0.0270 (10)	0.0027 (9)	0.0053 (8)	-0.0032 (9)
N2	0.0386 (11)	0.0366 (11)	0.0276 (10)	-0.0036 (10)	0.0070 (8)	-0.0069 (9)
O2	0.0500 (10)	0.0373 (10)	0.0357 (9)	-0.0073 (8)	0.0091 (8)	-0.0073 (8)
C6	0.0359 (13)	0.0333 (13)	0.0241 (11)	-0.0002 (11)	-0.0002 (9)	0.0003 (10)
C7	0.0370 (13)	0.0336 (13)	0.0284 (12)	-0.0031 (11)	0.0011 (10)	-0.0039 (10)
O3	0.0439 (10)	0.0381 (9)	0.0285 (9)	-0.0079 (8)	0.0031 (8)	-0.0063 (8)
C8	0.0405 (13)	0.0373 (13)	0.0230 (11)	-0.0031 (11)	0.0017 (10)	-0.0040 (10)
C9	0.0421 (15)	0.0484 (16)	0.0332 (13)	-0.0046 (13)	-0.0023 (12)	-0.0016 (12)

C10	0.0601 (18)	0.0457 (16)	0.0353 (14)	-0.0015 (15)	-0.0073 (13)	0.0006 (12)
C11	0.081 (2)	0.0479 (17)	0.0291 (14)	-0.0066 (16)	0.0059 (14)	0.0025 (13)
C12	0.065 (2)	0.069 (2)	0.0439 (17)	-0.0013 (17)	0.0223 (15)	0.0081 (15)
C13	0.0477 (16)	0.0589 (18)	0.0380 (14)	0.0064 (14)	0.0117 (13)	0.0048 (13)
C14	0.0365 (12)	0.0414 (14)	0.0216 (11)	-0.0010 (11)	0.0056 (10)	0.0013 (10)
C19	0.0415 (15)	0.0479 (17)	0.0380 (14)	-0.0075 (13)	-0.0017 (11)	0.0000 (12)
C18	0.0396 (15)	0.069 (2)	0.0418 (15)	-0.0119 (15)	-0.0047 (12)	0.0025 (15)
C17	0.0400 (16)	0.077 (2)	0.0396 (15)	0.0099 (16)	0.0021 (13)	0.0074 (15)
C16	0.0537 (18)	0.057 (2)	0.0507 (16)	0.0158 (15)	0.0037 (14)	-0.0042 (15)
C15	0.0490 (16)	0.0456 (16)	0.0421 (14)	0.0016 (14)	-0.0013 (13)	-0.0090 (13)
O4	0.0717 (14)	0.0477 (12)	0.0309 (10)	-0.0153 (10)	0.0000 (9)	-0.0013 (9)

Geometric parameters (Å, °)

C1—C2	1.347 (3)	C9—C10	1.392 (4)
C1—O1	1.377 (3)	С9—Н9	0.97 (3)
C1—C5	1.434 (3)	C10-C11	1.370 (4)
O1—C4	1.376 (3)	C10—H10	0.99 (3)
C4—C3	1.333 (4)	C11—C12	1.365 (4)
C4—H4	1.02 (3)	C11—H11	0.98 (3)
C3—C2	1.420 (4)	C12—C13	1.393 (4)
С3—Н3	0.96 (3)	C12—H12	0.92 (3)
С2—Н2	0.91 (3)	С13—Н13	0.97 (3)
C5—N1	1.282 (3)	C14—C15	1.381 (3)
С5—Н5	0.97 (2)	C14—C19	1.389 (3)
N1—N2	1.382 (3)	C19—C18	1.388 (4)
N2—C6	1.343 (3)	С19—Н19	0.95 (3)
N2—H2A	0.89 (2)	C18—C17	1.381 (4)
O2—C6	1.225 (3)	C18—H18	0.92 (3)
C6—C7	1.548 (3)	C17—C16	1.366 (4)
С7—О3	1.433 (3)	С17—Н17	0.93 (3)
C7—C8	1.534 (3)	C16—C15	1.392 (4)
C7—C14	1.539 (3)	С16—Н16	1.00 (3)
O3—H3A	0.92 (3)	C15—H15	0.94 (3)
C8—C13	1.384 (3)	O4—H4"	0.86 (5)
C8—C9	1.388 (3)	O4—H4'	0.97 (5)
C2-C1-O1	109.8 (2)	С8—С9—Н9	119.6 (15)
C2—C1—C5	131.6 (2)	С10—С9—Н9	119.8 (15)
O1—C1—C5	118.4 (2)	C11—C10—C9	120.2 (3)
C4—O1—C1	105.93 (19)	C11—C10—H10	122.2 (15)
C3—C4—O1	110.4 (2)	С9—С10—Н10	117.7 (16)
С3—С4—Н4	136.8 (15)	C12-C11-C10	119.6 (3)
O1—C4—H4	112.8 (15)	C12-C11-H11	118.8 (16)
C4—C3—C2	107.0 (2)	C10-C11-H11	121.5 (16)
С4—С3—Н3	127.2 (16)	C11—C12—C13	121.0 (3)
С2—С3—Н3	125.8 (16)	C11—C12—H12	124.2 (19)
C1—C2—C3	106.8 (2)	C13—C12—H12	114.7 (19)
C1—C2—H2	126.6 (17)	C8—C13—C12	119.9 (3)
C3—C2—H2	126.3 (17)	C8—C13—H13	119.2 (16)

N1—C5—C1	121.4 (2)	C12—C13—H13	120.9 (16)
N1—C5—H5	123.4 (14)	C15—C14—C19	118.2 (2)
C1—C5—H5	115.0 (14)	C15—C14—C7	119.8 (2)
C5—N1—N2	114.69 (19)	C19—C14—C7	122.0 (2)
C6—N2—N1	118.8 (2)	C18—C19—C14	120.7 (3)
C6—N2—H2A	120.6 (16)	C18—C19—H19	119.2 (16)
N1—N2—H2A	120.3 (16)	C14—C19—H19	120.1 (16)
O2—C6—N2	123.5 (2)	C17—C18—C19	120.1 (3)
O2—C6—C7	122.0 (2)	C17—C18—H18	120.7 (17)
N2—C6—C7	114.5 (2)	C19—C18—H18	119.2 (17)
O3—C7—C8	109.50 (17)	C16—C17—C18	119.9 (3)
O3—C7—C14	109.42 (18)	C16—C17—H17	119.7 (17)
C8—C7—C14	113.30 (18)	C18—C17—H17	120.4 (17)
O3—C7—C6	106.54 (18)	C17—C16—C15	120.0 (3)
C8—C7—C6	109.77 (18)	C17—C16—H16	120.9 (16)
C14—C7—C6	108.08 (17)	C15—C16—H16	119.2 (16)
С7—О3—НЗА	111 (2)	C14—C15—C16	121.2 (3)
C13—C8—C9	118.7 (2)	C14—C15—H15	120.0 (16)
C13—C8—C7	122.1 (2)	C16—C15—H15	118.8 (16)
C9—C8—C7	119.0 (2)	H4"—O4—H4'	102 (4)
C8—C9—C10	120.6 (3)		
C2—C1—O1—C4	-0.3 (3)	C6—C7—C8—C9	47.0 (3)
C5-C1-O1-C4	176.3 (2)	C13—C8—C9—C10	0.5 (4)
C1—O1—C4—C3	0.5 (3)	C7—C8—C9—C10	175.1 (2)
O1—C4—C3—C2	-0.5 (3)	C8—C9—C10—C11	-0.6 (4)
O1—C1—C2—C3	0.0 (3)	C9-C10-C11-C12	0.5 (4)
C5—C1—C2—C3	-176.0 (2)	C10-C11-C12-C13	-0.1 (4)
C4—C3—C2—C1	0.4 (3)	C9—C8—C13—C12	-0.1 (4)
C2-C1-C5-N1	176.7 (3)	C7—C8—C13—C12	-174.6 (2)
O1-C1-C5-N1	1.0 (3)	C11—C12—C13—C8	-0.1 (4)
C1—C5—N1—N2	-174.7 (2)	O3—C7—C14—C15	-10.3 (3)
C5—N1—N2—C6	169.5 (2)	C8—C7—C14—C15	112.2 (2)
N1—N2—C6—O2	5.7 (3)	C6—C7—C14—C15	-125.9 (2)
N1—N2—C6—C7	-174.00 (18)	O3—C7—C14—C19	170.6 (2)
O2—C6—C7—O3	176.32 (19)	C8—C7—C14—C19	-66.9 (3)
N2—C6—C7—O3	-4.0 (3)	C6—C7—C14—C19	55.0 (3)
O2—C6—C7—C8	57.9 (3)	C15-C14-C19-C18	0.4 (4)
N2—C6—C7—C8	-122.5 (2)	C7-C14-C19-C18	179.5 (2)
O2—C6—C7—C14	-66.2 (3)	C14-C19-C18-C17	-1.0 (4)
N2-C6-C7-C14	113.5 (2)	C19—C18—C17—C16	0.7 (4)
O3—C7—C8—C13	104.8 (2)	C18—C17—C16—C15	0.1 (4)
C14—C7—C8—C13	-17.6 (3)	C19—C14—C15—C16	0.4 (4)
C6—C7—C8—C13	-138.6 (2)	C7-C14-C15-C16	-178.8 (2)
O3—C7—C8—C9	-69.7 (3)	C17—C16—C15—C14	-0.6 (4)
С14—С7—С8—С9	167.9 (2)		
Hydrogen-bond geometry (Å, °)			

D—H···A D—H H···A D···A D—H···A

N2—H2A····O4 ⁱ	0.89 (2)	2.40 (2)	3.248 (3)	159 (2)
O3—H3A···O4 ⁱⁱ	0.92 (3)	1.94 (3)	2.776 (2)	151 (3)
O4—H4"…O2	0.86 (5)	2.11 (5)	2.937 (3)	161 (4)
O4—H4"…N1	0.86 (5)	2.38 (5)	2.929 (3)	122 (4)
O4—H4'…O1	0.97 (5)	2.07 (5)	3.003 (3)	163 (4)
O4—H4'…N1	0.97 (5)	2.56 (5)	2.929 (3)	103 (4)
N2—H2A···O3	0.89 (2)	2.09 (2)	2.521 (3)	109 (2)
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+1/2$; (ii) $x, -y+1/2, z+1/2.$			

